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Solutions for Steady Plane Orthogonal MHD Flows 
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Steady, plane flow of an inviscid, electrically conducting incompressible fluid 
with infinite electrical conductivity is considered and a single partial differential 
equation, in the case of orthogonal flow, is obtained which involves two functions. 
Appropriate specialization of these functions generates new exact solutions of 
the original equations. 

1. I N T R O D U C T I O N  

In recent years the study of flow problems of electrically conducting 
fluids has received considerable interest. Such studies have been made for 
many years in connection with astrophysical and geophysical problems, 
such as sun spot theory, the motion of the interstellar gas, the origin of  the 
earths'  magnetism, etc. Recently, engineering problems involving, e.g., con- 
trolled fusion research, reentry problems of  intercontinental ballistic mis- 
siles, p lasma jets, communications,  and power conversion have required 
studies of  the flow of an electrically conducting fluid. 

A vast amount  of  research has been carried out on the motion of 
electrically conducting fluids moving in a magnetic field since Alfven's 
(1950) classic work. The mathematical  complexity of  the phenomenon has 
induced many  researchers to adopt  a rather useful alternate technique of  
investigating special classes of  flows, such as aligned flows, orthogonal 
flows, or transverse flows. These special classes of  flows yielded various 
solvable second-order mathematical  structures, and these structures aided 
in the determination of  similarities and contrasts with ordinary fluid 
dynamics. These results were often achieved by employing well-established 
fluid-dynamic techniques. For example, in the case of  an inviscid incom- 
pressible fluid in steady flow, Ladikov (1962) derived two Bernoulli-type 
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equations for orthogonal flows, Kingston and Talbot (1969) classified all 
orthogonal flows as radial, vortex, rectilinear, or as certain types of  spirals, 
and Chandna and Nath (1972) established uniqueness properties for aligned 
flows. 

In this article a different approach (Rogers, 1971) is employed for 
orthogonal flows of an inviscid, electrically conducting incompressible fluid. 
A single partial differential equation which involves two functions is 
obtained. Appropriate specialization of these functions generates new exact 
solutions of  the original equations. 

2. BASIC EQUATIONS 

The equations of motion governing the steady flow of an inviscid, 
incompressible fluid with infinite conductivity in the presence .of a magnetic 
field are (Singh and Singh, 1985) 

d i v q = 0  (2.1) 

p (q. grad)q + Vp +/~Hx curl H = 0 (2.2) 

Curl(q x H) = 0 (2.3) 

div H = 0 (2.4) 

where q is the velocity field vector, H is the magnetic field vector, p is the 
fluid pressure, and the constants /~ and p are the magnetic permeability 
and fluid density, respectively. 

Equation (2.2) can be written as 

p (q -g rad)q+Vp 1 2 + ~ V H  = / ~ ( H . g r a d ) H  (2.5) 

where H is the magnitude of the magnetic field H. We now consider the 
flow to be two dimensional, so that q and H lie in a plane defined by the 
rectangular coordinates (x, y) and all the flow variables are functions of 
x, y. Therefore the above system of equations is replaced by the system 

au a v  
- - + - -  = 0 (2.6) 
Ox Oy 

Op* /u  Ou+ v Ou~ OHI OH2\ (2.7> 

Op*, [ Ou. Ov'~ / OH2 OHz\ 

uH2 - vHa = h (2.9) 

OHa +OHa = 0 (2.10) 
Ox Oy 
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where (u, v) are the velocity components, (H1, Ha) the components of the 
magnetic field vector, p*=p +llxH 2, and h is an arbitrary constant which 
is zero for aligned flow and nonzero in the case of nonaligned flows. 

Employing equations (2.6) and (2.10), we can replace equations (2.7) 
and (2.8) 

2 2 a ax (p* + pu - ~HI) +~y (puv - ~H, H2) = 0 (2.11) 

ox(PUV-~H~H2)+ ( p * + p v 2 - ~ H h = o  (2.12) 

We now study orthogonal flow. With t t  in the plane of flow, we have 

uHa + vH2 = 0 (2.13) 

Equations (2.9) and (2.12) yield 

-hv  hu 
n 1 = H 2 = v2 (2.14) U 2 ..l_ ~)2, U2q_ 

By the use of equation (2.14), equations (2.11) and (2.12) may be written as 

~x[p'..{_pu2__ [d'h2/)2 ldI_Z[Uv(p..{_ ~'6h2_..~.. ,lX~1 (2.15) 

and 

U/) P W'(u ~):i -'1- 0 l~h~2 ] Ox ~y p*+pv 2 (uZ+vZ)zj=O (2.16) 

The equation of continuity (2.6) implies the existence of a stream function 
~p(x, y), such that 

u=Oy,  v = - 6 ~  (2.17) 

From equation (2.16) the function 7/(x, y) is such that 

( J )  uv p+ =-'qxy (2.18) /)2)2 

and 

i~h2u z 
P*+PV 2 (uZ+v2)2 - ~xx (2.19) 

Note that ~7 '=  ~x is a Bateman's (1943-44) lift function. From equation 
(2.19), we may write 

p:g -- 9~xxl['t x "~ ?~xy~llY p ( l]lx~Jx "{'- IJlyl~y ) (2.20) 
X 
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where ~b,: ~ O, I~y ~ O, T~xy ~ O. With the help of  equations (2.17), (2.18), and 
(2.20), equation (2.15) can be transformed as 

(Oy~Txx-~xrl~y)~-(~x~Tyy-~y~Txy)~y-g(y)~bx~y=O (2.21) 

where g is an arbitrary function of y and equation (2.21) is a partial 
differential equation satisfied by ~b and ~7. 

3. SOLUTIONS 

Solutions to equation (2.21) are postulated of the form 

= x m A ( y )  (3.1) 

n = x " B ( y )  (3.2) 

where m, n are nonzero real constants. Substituting the above in (2.21), we 
get 

x n (mAB, ,  - n A ' B ' ) A - 1  + mnx  n-2[ m A B '  - (n - 1 )A 'B  ]A'-1 

+ m g ( y )  = 0 ( 3 ' 5  0) (3.3) 

This equation shows that the only possibility occurs when n = 2 and 

m A B " -  2 A ' B '  = 0 (3.4) 

2 m A B '  - 2 A ' B  + g ( y ) A '  = 0 (3.5) 

since the case n = 0 is excluded by virtue of  the requirement ~/~y # 0, while 
taking x arbitrary merely gives trivially that p* = g ( y )  vanishes everywhere. 

Equation (3.4) yields the relation 

B ' =  aA  Elm (3.6) 

where a is any constant. 
A solution of  (3.5) is attempted of the type 

A ' =  e A  ~ (3.7) 

where 8 ~ 0 and e ~ 0 are constants. From (3.7) we easily find that 

A =  [e(1 - ~ ) y + k ]  1/(1-~) (3.8) 

where k is a constant of  integration and 8 ~ 1. Hence, from (3.6), we get 

ma[ e(1 - 8 )y  + k] 2/m0-~)+1 
B - t-j (3.9) 

e [ e + m ( 1 - 8 ) ]  



Steady Plane Orthogonal MHD Flows 777 

where j is a constant of integration. Employing the equations (3.1), (3.8), 
and (3.9) in (2.14), (2.17), and (2.20), we obtain the flow variables 

hm 
H, = x m + l e 2  y(26-1) / (1-6)  + m2x.,-~ y~/(a-~) (3.10) 

he 
/-/2 = E2X m y6 / (1 -6 )  _[_ m2xm-2 y(2-,5)/(1-,~) 

u = x '%[e(1 - 6)y + k]  's/(1-6) 

v = - mx"+l[ e (1 - 6)y + k] 1/(1-~) 

p * =  

(3.11) 

(3.12) 

(3.13) 

2 m 2 a y  [2+m(1-~)]/m(1-~) + 2ae212 + m(1 - t~)]xY [m(~-l)+2]/m(1-'~) 

e [ 2 + m ( 1 -  6)]m 

__ p[m2x2m-2 y2/(1-,5) ..[_ E2X2m y28/(1-6)]  + 2 j  (3.14) 

where Y =  e ( 1 -  8 )y+  k. The pressure p is given by 

p = p * - l  l~( H~ + H2 ) 

2m2a I Az+"(1-~}l/"(1-a} + 2ae212 + m(1 - 6 ) ] x Y  E"~-1~+21/"(1-8) 

e[2+ m ( 1 - 6 ) ] m  

_ p[ m2x2m-2 y2/(1-~) + e2x2my2~/O-~)] 

txh2 [ e2 
2 (m'+le2y(2~-a)/( l -~)+mZx"-lY~/( l -8))  2 

m 2 
+ (eZx,,,y~/(l_8) + m-Tx,,_2 y~2_z)/o_n))2 ] +2j  (3.15) 

The streamlines of the flow are the curves 

xm[e(1 - 6)y+  k] ~/~ = C (constant) (3.16) 

This implies that 

x = C[e(1 - g )y+ k] -I/(~-~)m (3.1"1) 

where different values of C (constant) yield separate streamlines. 
In particular, for instance, if 

2 
m =  6 S 0  

6 - 1 '  

the streamlines are coaxial parabolas. Finally, the magnetic lines are given 
by 

(1 - 6 ) x  2 -  m[e(1 - ~)y + k] 2 = C1 (constant) (3.18) 
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This represents the equation of  a hyperbola wlrose eccentricity is 
[(1 + m - 8 ) /  C1] ~/2 and center has coordinates 

( 0 , - k / e ( 1 - 8 ) )  

In conclusion, it is observed that the physical requirement p* > 0 must 
be met by suitable adjustment of the available arbitrary constants m, a, e, 
8, and k. 
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